Using Anchor Text, Spam Filtering and Wikipedia for Web Search and Entity Ranking

نویسندگان

  • Jaap Kamps
  • Rianne Kaptein
  • Marijn Koolen
چکیده

In this paper, we document our efforts in participating to the TREC 2010 Entity Ranking and Web Tracks. We had multiple aims: For the Web Track we wanted to compare the effectiveness of anchor text of the category A and B collections and the impact of global document quality measures such as PageRank and spam scores. For the Entity Ranking Track, we use Wikipedia as a pivot to find relevant entities on the Web. We find that documents in ClueWeb09 category B have a higher probability of being retrieved than other documents in category A. In ClueWeb09 category B, spam is mainly an issue for full-text retrieval. Anchor text suffers little from spam. Spam scores can be used to filter spam but also to find key resources. Documents that are least likely to be spam tend to be high-quality results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Supporting Exploratory Search over the Arabic Web Content: The Case of ArabXplore

Due to the huge amount of data published on the Web, the Web search process has become more difficult, and it is sometimes hard to get the expected results, especially when the users are less certain about their information needs. Several efforts have been proposed to support exploratory search on the web by using query expansion, faceted search, or supplementary information extracted from exte...

متن کامل

Result Diversity and Entity Ranking Experiments: Anchors, Links, Text and Wikipedia

In this paper, we document our efforts in participating to the TREC 2009 Entity Ranking and Web Tracks. We had multiple aims: For the Web Track’s Adhoc task we experiment with document text and anchor text representation, and the use of the link structure. For the Web Track’s Diversity task we experiment with using a top down sliding window that, given the top ranked documents, chooses as the n...

متن کامل

Experiments with Result Diversity and Entity Ranking: Text, Anchors, Links, and Wikipedia

In this paper, we document our efforts in participating to the TREC 2009 Entity Ranking and Web Tracks. We had multiple aims: For the Web Track’s Adhoc task we experiment with document text and anchor text representation, and the use of the link structure. For the Web Track’s Diversity task we experiment with using a top down sliding window that, given the top ranked documents, chooses as the n...

متن کامل

A Multiple-Stage Framework for Related Entity Finding: FDWIM at TREC 2010 Entity Track

This paper describes a multiple-stage retrieval framework for the task of related entity finding on TREC 2010 Entity Track. In the document retrieval stage, search engine is used to improve the retrieval accuracy. In the entity extraction and filtering stage, we extract entity with NER tools, Wikipedia and text pattern recognition. Then stoplist and other rules are employed to filter entity. De...

متن کامل

بهبود شناسایی موجودیت‌های نامدار فارسی با استفاده از کسره اضافه

Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010